354 research outputs found

    Investigating the tension between cloud-related actors and individual privacy rights

    Get PDF
    Historically, little more than lip service has been paid to the rights of individuals to act to preserve their own privacy. Personal information is frequently exploited for commercial gain, often without the person’s knowledge or permission. New legislation, such as the EU General Data Protection Regulation Act, has acknowledged the need for legislative protection. This Act places the onus on service providers to preserve the confidentiality of their users’ and customers’ personal information, on pain of punitive fines for lapses. It accords special privileges to users, such as the right to be forgotten. This regulation has global jurisdiction covering the rights of any EU resident, worldwide. Assuring this legislated privacy protection presents a serious challenge, which is exacerbated in the cloud environment. A considerable number of actors are stakeholders in cloud ecosystems. Each has their own agenda and these are not necessarily well aligned. Cloud service providers, especially those offering social media services, are interested in growing their businesses and maximising revenue. There is a strong incentive for them to capitalise on their users’ personal information and usage information. Privacy is often the first victim. Here, we examine the tensions between the various cloud actors and propose a framework that could be used to ensure that privacy is preserved and respected in cloud systems

    Developing a Conceptual Framework for Cloud Security Assurance

    Get PDF
    Postprin

    Strong Complementarity and Non-locality in Categorical Quantum Mechanics

    Full text link
    Categorical quantum mechanics studies quantum theory in the framework of dagger-compact closed categories. Using this framework, we establish a tight relationship between two key quantum theoretical notions: non-locality and complementarity. In particular, we establish a direct connection between Mermin-type non-locality scenarios, which we generalise to an arbitrary number of parties, using systems of arbitrary dimension, and performing arbitrary measurements, and a new stronger notion of complementarity which we introduce here. Our derivation of the fact that strong complementarity is a necessary condition for a Mermin scenario provides a crisp operational interpretation for strong complementarity. We also provide a complete classification of strongly complementary observables for quantum theory, something which has not yet been achieved for ordinary complementarity. Since our main results are expressed in the (diagrammatic) language of dagger-compact categories, they can be applied outside of quantum theory, in any setting which supports the purely algebraic notion of strongly complementary observables. We have therefore introduced a method for discussing non-locality in a wide variety of models in addition to quantum theory. The diagrammatic calculus substantially simplifies (and sometimes even trivialises) many of the derivations, and provides new insights. In particular, the diagrammatic computation of correlations clearly shows how local measurements interact to yield a global overall effect. In other words, we depict non-locality.Comment: 15 pages (incl. 5 appendix). To appear: LiCS 201

    Information Security in the Cloud: Should We be Using a Different Approach?

    Get PDF
    Postprin

    The Importance of Proper Measurement for a Cloud Security Assurance Model

    Get PDF
    Postprin

    Interacting quantum observables : categorical algebra and diagrammatics

    Get PDF
    This paper has two tightly intertwined aims: (i) to introduce an intuitive and universal graphical calculus for multi-qubit systems, the ZX-calculus, which greatly simplifies derivations in the area of quantum computation and information. (ii) To axiomatize complementarity of quantum observables within a general framework for physical theories in terms of dagger symmetric monoidal categories. We also axiomatize phase shifts within this framework. Using the well-studied canonical correspondence between graphical calculi and dagger symmetric monoidal categories, our results provide a purely graphical formalisation of complementarity for quantum observables. Each individual observable, represented by a commutative special dagger Frobenius algebra, gives rise to an Abelian group of phase shifts, which we call the phase group. We also identify a strong form of complementarity, satisfied by the Z- and X-spin observables, which yields a scaled variant of a bialgebra

    Enhancing Cloud Security and Privacy : Broadening the Service Level Agreement

    Get PDF
    Postprin

    Enterprise security: why do we make it so difficult?

    No full text
    Achieving information security and privacy is not a trivial exercise. This becomes much more challenging in the cloud, due to the multi-tenancy nature of cloud ecosystems. We are concerned that the traditional legacy compatible approach to software development is holding enterprises back from achieving effective security and privacy, particularly in the cloud. In this paper we discuss the implications of the traditional approach to software development and question why we stick to this approach, despite the fact that this approach makes the job of security and privacy far more difficult
    • …
    corecore